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For the most part, we have limited our consideration so far to flows for which density variations and thus
compressibility effects are negligible. In this chapter, we lift this limitation and consider flows that - involve
significant changes in density. Such flows are called compressible flows, and they are frequently encountered in
devices that involve the flow of gases at very high speeds. Compressible flow combines fluid dynamics and

thermodynamics in that both are necessary to the development of the required theoretical background.

All real fluids are compressible to some extent and therefore their density will change with change in

pressure or temperature. If the relative change in density A p/p is small, the fluid can be treated as incompressible.

A compressible fluid, such as air, can be considered as incompressible with constant p if changes in elevation are
small, acceleration is small, and/ or temperature changes are negligible. In other words, if Mach’s number U/C,

where C is the sonic velocity, is small, compressible fluid can be treated as incompressible.

‘Compressibility’ atfects the drag co-efficients of bodies by formation of shock waves, discharge coefficients
of measuring devices such as orifice meters, venturi meters and pitot tubes, stagnation pressure and flows in
converging-diverging sections. The gases are treated as compressible fluids and study of this type of flow is often

referred to as ‘Gas dynamics’.



COMPRESSIBLE FLUID
VERSUS

INCOMPRESSIBLE FLUID

Compressible fluid is matter Incompressible fluid is matter

that can be compressed with that cannot be compressed

the application of an external with the application of an
pressure external pressure

Volume can be reduced Volume cannot be reduced
with the application of a with the application of a
pressure on the fluid pressure on the fluid

Density can be changed Density cannot be changed
with the application of a with the application of a
pressure on the fluid pressure on the fluid

Value of Mach number 'alue of Mach number
should be greater than 0.3 should be less than 0.3




Some key problems where compressibility effect has to be considered are :
* Flow of gases through nozzles, orifices.

 Atmospheric sciences, ocean sciences.

 Supersonic wind tunnels

* Compressors, diffusers.

* Flight of high-speed Aeroplan's and projectiles moving at higher altitudes
* Water hammer and acoustics

* Jet engines, Rocket motors, gas turbines, steam turbines, IC engine etc.,.
* High speed entry into a planetary atmosphere.

* @Gas pipelines

* (asting

* Commercial applications like abrasive blasting

* Understanding nature like motion of snails.



BASIC THERMODYNAMIC RELATIONS

1. The Characteristics Equation of State

At temperatures that are considerably 1in excess of critical temperature of a fluid, and at very low pressure,

the vapour of fluid tends to obey the equation:

In practice, no gas obeys this law rigidly, but many gases tend towards 1t. An 1imaginary 1deal

PV _n
T
equation of a state of a perfect gas. The constant R 1s called the gas constant. Each perfect gas has

a different gas constant.
Units of R are Nm/kg K or kl/kg K
Usually, the characteristic equation 1s written as :

J1s called the characteristic

gas which obeys this law 1s called a perfect gas, and the equation

pv = RT (1)
or, for m kg, occupying /' m’,

pV = mRT ..(2)
or, p = —=RT =pRT (2 (a))

V



Taking log on both sides, we get:

In (p) = In(p)+In(R)+ In(7)
Upon differentiation, we have:

ap _ dp  dR  dT
p p R T

Since R 1s constant for a particular gas, its derivative 1s zero.

dp _dp _dT _ -.(3)
p p I

Eqn. (3) 1s the differential equation of a perfect gas.

2. Specific Heats

— The specific heat of a solid or liquid 1s usually defined as the heat required to raise unit mass

through one degree temperature rise.

— For a gas there are an infinite number of ways in which heat may be added between any two
temperatures, and hence a gas could have an infinite number of specific heats. However, only
two specific heats for gases are defined.



(1) Specific heat at constant volume, ¢,
(if) Specific head at constant pressure, ¢

b p'
(In case of real gases, C, and ¢  vary with temperature, but a suitable average value may be used
for most practical purposes.)
c, = ¢, R ..(4)
C
c—p = v|(gamma) -(3)

3. Internal Energy

[t 1s the heat energy stored 1n a gas. If a certain amount of heat 1s supplied to a gas the result 1s
that temperature of gas may increase or volume of gas may increase thereby doing some external
work or both temperature and volume may increase. If during heating of a gas the temperature
increases its internal energy will also increase.

Joule’s law of internal energy states that the internal energy of a perfect gas is a function of
temperature only. In other words, internal energy of a gas 1s dependent on the femperature change
only and 1s not affected by the change in pressure and volume.

We do not know how to find the absolute quantity of internal energy 1n any substance, however,
what 1s needed 1n engineering 1s the change of internal energy (AU).



4. Enthalpy

One of the fundamental quantities which occurs invariably in thermodynamics 1s the sum of
internal energy (u) and pressure volume product (pv). This sum is called Enthalpy (h).

i.e. h = u-+ pu
The total enthalpy of mass, m, of a fluid is given by,
H = U+ pV| where H=mh

Energy. Energy 1s a general term embracing energy in transition and stored energy. The stored
energy of a substance may be in the forms of mechanical energy and internal energy (other forms
of stored energy may be chemical energy and electrical energy). Part of the stored energy may take
the form of either potential energy or kinetic energy due to velocity. The balance part of the energy
1s known as internal energy.

Heat and work. These are the forms of energy 1n transition and are the only forms 1n which
energy can cross the boundaries of a system. Neither heat nor work can exist as stored energy.



Work. Work 1s said to be done when a force moves through a distance. If a part of the
boundary of a system undergoes a displacement under the action of a pressure, the work done
W 1s the product of the force (pressure x area) and the distance it moves 1n the direction of the force.

Work 1s a transient quantity which only appears at the boundary while a change of state 1s taking
place within a system. Work 1s “‘something” which appears at the boundary when a system changes
1ts state due to the movement of a part of the boundary under the action of a force.

Work output of the system = + W

Work mput to system = — W
Heat. Heat (denoted by the symbol Q) may be defined 1n an analogous way to work as follows:

“Heat is something which appears at the boundary when a system changes its state due to a
difference in temperature between the system and its surroundings’ .

Heat, like work, 1s a transient quantity which only appears at the boundary while a change 1s
taking place within the system.

Heat received by the system = + Q
Heat rejected or given up by the system =—Q



BASIC THERMODYNAMIC PROCESSES

Isothermal process pv or —

V
D

—

constant, T = constant ). A process at a constant tempera-

ture 1s called an isothermal process. When a working substance in a cylinder behind a piston
expands from a high pressure there is a tendency for the temperature to fall. In an isothermal
expansion heat must be added continuously in order to keep the temperature at the initial
value. Similarly in an isothermal compression heat must be removed from the working sub-
stance continuously during the process.

Formulae (for unit mass) .

Heat added,

Work done,

p, v, T, relations :

0= pv In
W= pv; In
_f
pvi=|or£L=

\

P1

—~ |=RT; In

—= |=RT} In

&\
P2 )

(13)

(14)

(15)



Adiabatic process (pv' or £ _ constant) . An adiabatic process 1s one in which no heat

.
p

is transferred to or from the gas during the process. Such a process can be reversible or ir-

reversible. For an adiabatic process to take place, perfect thermal insulation for the system

must be available.
Formulae (for unit mass) :

Heat added, O = 0 ..(16)
Work done, W= PiV1 — PrVy _ R (1 - 1) L(17)
y—1 y —1
p, v, T, relations : p,vi = p,v) ..(18)

vy — 1

Y —1 B
I, _(»n (P

1 \ V3 4 \ P1 )

(19)

If the adiabatic process 1s reversible (or frictionless), 1t 1s known as isentropic process. In case

. . C . ..
the pressure and density are related in such a way that y # C—p but 1s equal to some positive value

1!

then the process 1s known as polytropic, according to which ;; = constant (n # 7).



BASIC EQUATIONS OF COMPRESSIBLE FLUID FLOW

The basic equations of compressible fluid flow are :
(1) Continuity equation v
(11) Momentum equation
(111) Energy equation
(1v) Equation of state v

The only change from incompressible fluid cases 1s that thermodynamic laws are applied 1n

addition to the basic principle of conservation of mass, energy and momentum.



1. Continuity Equation

In case of one-dimensional flow, mass per second = pAV
(where, p = mass density, 4 = area of cross-section, V' = velocity)

Since the mass or mass per second 1s constant according to law of conservation of mass,
theretfore,

pAV = Constant ...(20)
Differentiating the above equation, we get:
d(pAV) = 0 or pd(AV)+ AVdp =0
or, pAdV+TVdA)+AVdp = 0 or pAdV+plVdA+ AVdp =0
Dividing both sides by pAV, and rearranging we get:

dp  dd  dV _ 0 .(21)

|

P A V

Eqgn. (15.18) 1s also known as equation of continuity 1n differential form.




2. Momentum Equation

The momentum equation for compressible fluids 1s similar to the one for incompressible fluids.
This 1s because 1In momentum equation the change in momentum flux is equated to force required to
cause this change.

Momentum flux = Mass flux x velocity = pAV x V
But the mass flux i.e. pA} = constant ...By continuity equation

Thus the momentum equation 1s completely independent of the compressibility effects and
hence for compressible fluids too the momentum equation, say X-direction, may be expressed as :

SF, = (pAVV,),~(pAVV,) (22)

3. Bernoulli’s or Energy Equation

In chapter 6 Bernoulli’s equation for an incompressible fluid has been derived and the same
procedure 1s followed. As the flow of compressible fluid 1s steady, the same Euler equation (Egn. 6.)
1S obtained as :

W VAV + gl = 0 -(.23)

P




Integrating both sides, we get:

ap | IVdV + J'gdz = constant
P
2
O, d—;)- + VT + gz = constant -(24)

In compressible flow since p 1s not constant 1t cannot be taken outside the integration sign. In
compressible fluids the pressure (p) changes with change of density (p), depending on the type of
process. Let us find out the Bernoulli’s equation for 1sothermal and adiabatic processes.

(a) Bernoulli’s equation for isothermal process :
In case of an isothermal process

pyv = constant or £ - constant = ¢, (say)

p
(where v = specific volume = 1/p)

- P
P



Hence, [4P — _ [a9P _ ap _ 1 _ P i o P
I .[p/c] j el I el n(p) " n(p) |- ¢ B

Substituting the value of ? In eqn. (24), we get

2
P, (p) + VT + gz = constant
Dividing both sides by g, we get

2

£ In(p) + Y _+z = ponstant ")
Pg 2g

Eqn. (25) 1s the Bernoulli s equation for compressible flow undergoing isothermal process.




(b) Bernoulli’s equation for adiabatic process :
In case of an adiabatic process:

pv' = constant or P _ ;onstant = c, (say)

o
P P 1/y
Y = or — | &
g € P (‘72]
Hence J'dp _ J' dp — (c )WJ‘ | o 1/-,fj ~1/y
’ = p=(c,)"" |p "dp
P Jpley)tt T :
Ll ¥
- p ' (Cz)w (P)( ! ] Y 1y

1/ _ _
(€)™ (_l+1j B [Y—]] _Y—lcz
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Substituting the value of J.% 1n eqn. (15.24), we get

2
[ ! ]£+V - gz = constant

y=-1)p 2
Dividing both sides by g, we get
2
( ! ] L 4 -z = constant ..(26)
y-1)pg 2g

Eqn. (26) 1s the Bernoulli’s equation for compressible flow undergoing adiabatic process.



Example 1 Fig. shows a horizontal pipe in which gas is flowing at a temperature of
6°C. The pressures at the sections 1 and 2 are 4 bar (gauge) and 3 bar (gauge) respectively. If R =
287 J/kg K and atmospheric pressure is | bar find the velocities of the gas at these sections.

Solution. @
Section 1: Diameter of pipe, D, = 60 mm = 0.06 m - A | ?
E—} V I 60 mm 3?; mm —» /,
Area, A, = % x 0.06°=2.827 x 10~ m° py =4 bar (gauge) v \ _
Temperature, 7, = 6 +273=279K | 4 p, =3 bar (gauge)

Pressure, p, = 4 bar (gauge) =4 + 1 =5 bar (abs.) =5 X 10° N/m? (abs.)
Section 2: Diameter of pipe, D, = 30 mm = 0.03 m

g x 0.32=7.0686 x 10~ m?

Pressure, p, = 3 bar (gauge)
3+ 1=4bar (abs.) =4 x 10° N/m* (abs.)
287 J/kg K

Area, A,

(Gas constant, R



Velocities of the gas at sections 1 and 2,V , V,:

Applying continuity equation at 1 and 2, we get:

—t — :4)(—-—
Vi PLA4, P, X 70686 x 107 P>

For an isothermal process, we have:

5
&:& or pl_p1=5><10 —1.25

p AV, =PV, or

P P2 Py Py 4x10°
Substituting the value of g‘ = 1.25 1n eqgn. (i), we get:
2
2 —4x125 =5 ot V,=5V, (i)
i
Applying Bernoulli’s equation at sections 1 and 2 for 1sothermal process (Eqn.25), we have:
2 2
Plin(p) + 2 +2 = 22 In(py) + 5= + 2,

P& 28 P 2g



But, Zi
2
pl 1n( , Vl
py)
P18 | 28
P P>
or, In(p) In(p,)
P18 | 2 ’
But, Py
P
Pi P1
In(p,) In(p,)
P18 F P18 (P2
or, FL 1w ()
Pi€ P2
[ 5
or, Pi | 2x 19
plg \4 X 10 )
or, P

2
= P2y p,) + 2
P2 & 28
_ K
2g 2g

P2 (for an isothermal process),
P2

vi_n
2g 2g
(SV)* V& 247 1217

2g 2g 2g g

2 2
12V" or 0223 P — 12V,
g P18 g
= 53817
0.223 '

Z,, since the pipe 1s horizontal,

( . o

V,=3V))

..(iiP)



From equation of state, we have:

p, = p,RT, ..Sectionl or F1I - RT, =287 x 279 = 80073

P
Substituting the valve of ? In eqgn. (7i7), we get:
1
3.8 12 = 80073 OF 2= 850;)783 — 148834
or, V, = 38.58 m/s (Ans.)

From eqn. (ii) we have: V, = 5V, =5x38.58=192.9 m/s (Ans.)



Example 2. In the case of air flow in a conduit transition, the pressure, velocity and
temperature at the upstream section are 35 kN/m°, 30 m/s and 150°C respectively. If at the
downstream section the velocity is 130 m/s, determine the pressure and the temperature if the
process followed is isentropiic. Take y= 1.4, R =290 J/kg K.

Solution.
Section 1 (upstream) : Pressure, p, = 35 kN/m”,
Velocity, V, = 30 m/s
Iemperature, 7, = 150 +273 =423 K
Velocity, I, = 150 m/s
R =290J/kgK,y=14
Section 2 (downstream) :
Pressure, p, :
Applying Bernoulli’s equation at sections 1 and 2 for isentropic (reversible adiabatic) process,

we have:
) 2
[YJPI.VI+2_/Y\JB2.V2.T
l | | Hz
Y \7_1/ Prg 28




Assuming z, = z,, we have:

Y A

=[v

_]/

Cancelling ‘g’ on both the sides, and rearranging we get:

[y

S

For an 1sentropic flow:

Substituting the value o

( pi ) P +V_]2
Y—-1)pg8 2g
\Pu({_ P2y Pi
JP1\ P11 P2y
P
ol

fEL

P2

y I
<1 p2x/ﬂ_\y>
- P \P2)
: >
P11 &\]_¥>

P \ P1

_non
2 2

= £ or
o}

In eqn. (i), we have:

P1 _

. sz V12
2 2
. sz y 2
2 2

P>

(1)



| =1 ) ,
( ¥ Jﬂ":]_[&] (. - V_Z_.V_l
Y=1)p | P ) 2 2

Substituting the values, we get:
i 1.4-1"

x 122670 71 — [ﬁ\ Ay 150° B 307
P1 J 2 2

1.4

e = 10800

.
( % = RT, =290 x 423 = 122670
l /

10800

42934541 — (& :

or )23 | 10800
w4y 429345

(0.9748)"%°%7 = (0.9748)°> = 0.9145

= 0.9748

or, i 4

or, p, = 35%0.9145 =32 kKN/m” (Ans.)



Temperature, 7,:
For an isentropic process, we have:
p=1 1.4—1

4 h
% = (0.9145) 4 =(0.9145)"%%7=0.9748
\ 1 J

423 % 0.9748=4123 K or 1, =412.3 —273=139.3° C (Ans.)

Iy

|

L
T2



PROPAGATION OF DISTURBACES IN FLUID AND VELOCITY OF SOUND

The solids as well as fluids consist of molecules. Whereas the molecules in solids are close
together , these are relatively apart in fluids. Consequently, whenever there is a minor disturbance, it
travels instantaneously in case of solids; but in case of fluid the molecules change in position before the
transmission or propagation of the disturbance depends upon its elastic properties. The velocity of

disturbance depends upon the changes of pressure and density of the fluid.

-



The propagation of disturbance is similar to the propagation of sound through a media. The speed
of propagation of sound in a media is known as acoustic or sonic velocity and depends upon the

difference of pressure. Incompressible flow, velocity of sound (sonic velocity) is of paramount importance

Sound Wave Refraction: Day and Night

x

h @ day | ”‘ 4 night
> & ¥

cooler, warmer,
sound travels slower sound travels faster

9
warmer,

sound travels faster &

travels slower
u \
sound waves \ g '
ground ground

¥
L\‘ﬁ

f‘,:r‘a
i'n

)

cooler, sound

sound waves “




Propagation of sound through fluids. The places with high density of balls is experiencing Compression and the empty spaces in between are
undergoing Rarefaction. The wavelength is the graph of the pressure variation.



Derivation of Sonic Velocity (velocity of sound)

Consider a one dimensional flow through long straight rigid pipe of uniform cross-sectional area
fitted with a frictionless piston at one end as shown in Fig. The tube is filled with a compressible fluid

initially at rest. If the piston is moved suddenly to the right with velocity, a pressure wave would be

propagated through the fluid with a velocity of sound wave.

Let, — Piston — Rigid — Wave front
1pe
A = Cross-sectional area of the pipe, I PP
V = Piston velocity, L L LE L LY e e il d,
|
p = Fluid pressure in the pipe before the piston _ &
== [/ === C=#&—

movement, -
p = Fluid density before the piston movement, : H f = , |

d Sl A B s~ A ,rf r e e ‘ ff"' o~ ,,f'f “ I’,.r"’r F N 4 ‘
dt = A small interval of time during which piston moves, I _

—>{ dx = yar [ (L~ d)
C = Velocity of pressure wave or sound wave |

< (dL = Cdt) >

(travelling in the fluid).
Fig. One dimensional pressure wave propagation.



Before the movement of the poston the length dL has an initial density p, and its total mass
= pxdLxA4

When the piston moves through a distance dx, the fluid density within the compressed region of
length (dL — dx) will be increased and becomes (p + dp) and subsequently the total mass of fluid 1n
the compressed region = (p + dp) (dL dx) x A

5 P X dL X A = (p +dp) (dL — dx) X A/ ...by principle of continuity.
But, dL = (' dt and dx = Vdt: therefore,, the above equation becomes:
pCdt = (p+dp)(C-V)dt
of, pC = (p+dp)(C-V) or pC=pC—-pV+dp.C—-dp.V
or, 0 = —pV+dp.C—dp.V
Neglecting the term dp.V (V being much smaller than C ), we get:
_ _pr (27
dp.C = pV or |C Z’p (.27)




Further in the region of compressed fluid, the fluid particles have attained a velocity which 1s
apparently equal to V' (velocity of the piston), accompanied by an increase in pressure dp due to
sudden motion of the piston. Applying inpulse-momentum equation for the fluid in the compressed
region during dt, we get:

dp x A'x di = pxdL x A(V-0)

(Force on the fluid)  (Rate of change of momentum)

_ _dL Cdt
or, ap = p—=V =px—=xV=pCV (- dL=Cd)
dp
Or, =
el (28)

Multiplying eqns. (27) and ( 28 ) , we get:

2 = pdep_dp
dp pV dp

dp
\dp ...(.29)




Sonic Velocity in terms of Bulk Modulus

The bulk modulus of elasticity of fluid (K) 1s defined as:
dp (i)

=

where, dv = decrease 1n volume, and v = original volume.

K:

(—ve sign 1ndicates that volume decreases with increase in pressure)

Also, volume v « l or v p = constant

P
Differentiating both sides, we get

vdp+pdv = 0 or _ & _3gp

v P




Substituting this value of

v\ K
ap _ dp . dp _K
K p dp P
g}; In eqn. ( 29), we get
c = |K ..(30)
p

bkqn. (30) is applicable for liquids and gases.



Sonic Velocity for Isothermal Process

For is tothermal process : £ = constant

Y
Difterentiating both sides, we get:
p-dp—zp*dp — 0 o W p-c;’pzo
P P P
o @ _ AP | B _P_pgr| (31
p dp p

P

p \
(_ = RT  ..equation of state

P

/

Substituting the value of ;f_p In eqn. ( 29), we get:
P

C = §=Jﬁ (32)




Sonic Velocity for Adiabatic Process

For 1sentropic (reversible adiabatic) process: P _ constant

o'

or, p.p ' = Constant

Differentiating both sides, we have p (=7) .p " 'dp+p Tdp=0

Dividing both sides by p ™/, we get: —pyp 'dp+dp=0 or dp=pyp ' dp
4 K
or, L SO "y P _ Ry
dp p . P )
dp .

Substituting the value of s In eqn. (29), we get:
P

C = yRT . 33)




The following points are worth noting :

(i) The process is assumed to be adiabatic when minor disturbances are to be propagated
through air; due to very high velocity of disturbances/pressure waves appreciable heat transfer

does not take place.

(ii) For calculation of velocity of the sound/pressure waves, isothermal process is considered
only when it is mentioned in the numerical problem (that the process is isothermal). When no
process is mentioned in the problem, calculations are made assuming the process to be

adiabatic.

(iii) For an incompressible fluid, the speed of sound is infinite (Mach number is zero).



MACH NUMBER

The Mach number is an important parameter in dealing with the flow of compressible fluids,

when elastic forces become important and predominant.

Mach number is defined as the square root of the ratio of the inertia force of a fluid to the elastic force.

' fz /2 7
.. Mach number, M = Iner‘[l—a force _ eV _ gy _ ¥
\ Elastic force VK4 \K/p JKip C

- JK/p=C
...eqn. (30)

4
e M= = (34)
[.€ C

Velocity at a point 1in a fluid
Velocity of sound at that point at a given instant of time

Thus. M =



Depending on the value of Mach number, the flow can be classified as follows :

|. Subsonic flow : Mach number 1s /ess than 1.0 (or M < 1); 1n this case V' < C.

2. Sonic flow : Mach number 1s equal to 1.0 (or M = 1); in this case V' = C.

3. Supersonic flow : Mach number 1s greater than 1.0 (or M > 1); in this case V' > C.

When the Mach number 1n flow region i1s slightly less to sightly greater than 1.0, the flow

1s termed as fransonic flow.

The following points are worth noting :
(1) Mach number 1s important in those problems 1in which the flow velocity 1s comparable with the

sonic velocity (velocity of sound). It may happen 1n case of airplanes travelling at very high

speed, projectiles, bullets etc.

(11) If for any flow system the Mach number 1s less than about 0.4 the effects of compressibility

may be neglected (for that flow system).



Regime

Re-entry
speeds

High-
hypersonic

Hypersonic

Supersonic

Transonic

Subsonic

(Mach)

>25.0

10.0-
25.0

0.0-
10.0

1.3-5.0

0.8-1.3

(knots)

>16,537

6,615-
16,537

3,308
6,615

794-3,308

530-794

<330

Speed

(mph)
>19.031

7,680-
19,031

3,806-
7,680

915-3,806

609-914

<609

(km/h)

>30,626

12,251~
30,626

6,126
12,251

1,470-
6,126

980-1,470

<980

(m/s)
>8.508

3,403-
8,508

1,702-
3,403

410-
1,702

273-409

<273



femperature

-56°C
67°F

12 km
39.000 #

Temperature

L AT
Sea Level ‘ 15°C
\ 59'F

*5 -

Awrplane Traveling at the Speed of Sound
1.056 km/h {660 mph)

Airplanea Traveling at the Speed of Sound
1.216 km/h (760 mph)




Example Find the sonic velocity for the following fluids :
(i) Crude oil of specific gravity 0.8 and bulk modulus 1.5 GN/m”.
(if) Mercury having a bulk modulus of 27 GN/m". (Delhi University)

~d

Solution. Crude oil: Specific gravity = 0.8
: Density of o1l, p = 0.8 x 1000 = 800 kg/m3
Bulk modulus, £ = 1.5 GN/m?
Mercury . Bulk modulus, K = 27 GN/m"
Density of mercury, p = 13.6 x 1000 = 13600 kg/m’

Sonic velocity, C

“‘oil ? (‘Hg :

Sonic velocity 1s given by the relation :

c= & _.[Eqn. (30)]
\'p
9
G = \LSX 107 _ 13693 mys (Ans.)
27 x 10°

= 1409 m/s (Ans.)

M
=
I
o

13600



Example An aeroplane is flying at a height of 14 km where temperature is — 45°C. The

speed of the plane is corresponding to M = 2. Find the speed of the plane if R = 287 J/kg K and
y=14.

Solution.  Temperature (at a height of 14 km), t = —45°C.
=—45+273=228K
Mach number, M = 2
Gas constant, R = 287 J/kg K

y = 1.4
Speed of the plane, V :

Sonic velocity, (C) 1s given by:

C = \/yRT (assuming the process to be adiabatic) ..[Eqn. (33)]

J1.4 x 287 x 228 =302.67 m/s

Also. A = % [Eqn. (34)]

V
302.67

Or, 2

605.34 x 3600
o, V= 2x302.67=60534m/s = — 08‘0 ~ 21792 km/h (Ans.)




PROPAGATION OF DISTURBANCE IN COMPRESSIBLE FLUID

When some disturbance is created in a compressible fluid (elastic or pressure waves are also
generated), it is propagated in all directions with sonic velocity (= C) and its nature of propagation
depends upon the Mach number (M). Such disturbance may be created when an object moves in a

relatively stationary compressible fluid or when a compressible fluid flows past a stationary object.

Consider a tiny projectile moving in a straight line with velocity V through a compressible fluid
which is stationary. Let the projectile is at A when time t = 0, then in time t it will move through a
distance AB = Vt. During this time, the disturbance which originated from the projectile when it was at A
will grow into the surface of sphere of radius Ct as shown in Fig., which also shows the growth of the
other disturbances which will originate from the projectile at every t/4 interval of time as the projectile

moves from A to B.

Let us find nature of propagation of the disturbance for different Mach numbers.



Case I: When M < 1 (i.e., V < C ). In this case since V < C the projectile lags behind the
disturbance/pressure wave and hence as shown in Fig. (a) the projectile at point B lies inside the sphere

of radius Ct and inside other spheres formed by the disturbances/waves started at intermediate points.

ZONE 7SN
OF b

T Wavifronits
ACTION Subsonic

speed

An air craft in flight creates a series of

(a) M< ] (V < C) pressure waves, that travel outwards in all
Subsonic directions and are perceived as Sound.



Case ll: When M =1 (i.e., V = C). In this case, the disturbance always travels with the projectile as shown

in Fig.(b). The circle drawn with center A will pass through B.

Overlapping
ZONE
OF '
SILENCE ——
(b)yM =1 (V=0C) Wavefronts

Sonic motion

The faster the air craft moves, the
more compressed waves becomes



Case lll: When M > 1 (i.e., V > C). In this case the projectile
travels faster than the disturbance. Thus, the distance AB

(which the projectile has travelled) is more than Ct, and

hence the projectile at point ‘B’ is outside the spheres é
formed due to formation and growth of disturbance att= F
0 and at the intermediate points (Fig.(c)). If the tangents oF
are drawn (from the point B) to the circles, the spherical é
pressure waves form a cone with its vertex at B. It is g
N

known as Mach cone. The semi vertex angle a of the cone

Is known as Mach angle which is given by:

(c)M>1(V>C)
Supersonic motion

sin o = L2

i_
Ve M



In such a case (M > 1), the effect of the disturbance is felt only in region inside the Mach cone, this region is

called zone of action. The region outside the Mach cone is called zone of silence. It has been observed that when an

airplane is moving with supersonic speed, its noise is heard only after the plane has already passed over us.
Vaource = 1. 4 Vaound

Shock Cone

Supersonic
speed

When an object is moving faster than the speed of sound, eventually the waves
merge into a Shock wave. A person on the ground hears a Boom when the shock
wave crosses his or her location.












Vapor cone

A vapor cone, also known as shock collar or shock
egg, Is a visible cloud of condensed water that can
sometimes form around an object moving at high speed
through moist air, for example, an aircraft flying at transonic
speeds. When the localized air pressure around the object
drops, so does the air temperature. If the temperature drops

below the saturation temperature, a cloud formes.




Example Find the velocity of a bullet fired in standard air if its Mach angle is 40° .

Solution.  Mach angle, a = 40°
y = 1.4
For standard air: R = 287 J/kgK,t=15°C or T=15+273=2838K

Velocity of the bullet, V':
Sonic velocity, C = \/yRT = \/l 4 x 287 x 288 =340.2 m/s

Now, Sin oL = -g
%
340.2
or, sin 40° = L or V =— -=252926 m/s (Ans.)

V sin 40



Example A4 projectile is travelling in air having pressure and temperature as 88.3 kN/m’
and — 2°C. If the Mach angle is 40°, find the velocity of the projectile.

lakey=1.4and R= 287 J/kg K. IM.U.J

Solution. Pressure, p = 88.3 kN/m?
Temperature, 7 = —2+273=271 K
Mach angle, M = 40°
vy = 1.4, R=287 J/kg K

Velocity of the projectile, V-
Sonic velocity, C = \/yRT = \/l+4 x 287 x 271 = 330 m/s

Now, SIn oL = £ or sin 40° = L
V V
330
or, V = = 35134 m/s (Ans.)

sin 40°



Example A supersonic aircraft flies at an altitude of 1.8 km where temperature is 4°C.
Determine the speed of the aircraft if its sound is heard 4 seconds after its passage over the head

of an observer. Take R = 287 J/kg K and y = 1.4.
Solution. Altitude of the aircraft = 1.8 km = 1800 m
Temperature, 7’ = 4+ 273 =277 K
Time, t = 4s
Speed of the aircraft, V' :

Refer to Fig. 15.5. Let O represent the observer and A the
position of the aircraft just vertically over the observer. After 4
seconds, the aircraft reaches the position represented by the point
B. Line AB represents the wave front and o the Mach angle.

From Fig. 15.5, we have :

~ 1800 450 (i)
tan o, = =
4V 4
V |
But, Mach number M = — =—
C'  sino
&
or, V = : ;s
' SIn o (i)

| —— 4] ———Pp

A _
7
r
| f,/
= Vz
(o P ]
S AB=Vt=4V
O

B



Substituting the value of V in eqn. (i), we get:
450 450 sin «

tan o0 = _
(C/sin o) C
E sino. 450 sin a - - C.
’ COS C 450
But, C = JyRT , where C is the sonic velocity

R = 287 J/kgK and y=14
C = J1.4x287x277 =333.6 m/s

Substituting the value of C 1n eqn. (i), we get:

COS O = 333.6 =(.7413
450

sina = y1—cos? a =41 —0.7413% = 0.6712

Substituting the value of sin o 1n eqn. (ii), we get:

. (iii)

.(Given)



STAGNATION PROPERTIES

The point on the immersed body where the velocity is zero is called stagnation point. At this

point velocity head is converted into pressure head. The values of pressure (PD.), temperature (7;) and

density (0.) at stagnation point are called stagnation properties.

Stream lines

During a stagnation process, the

kinetic energy of a fluid is converted to

Body

enthalpy (internal energy + flow energy), which ‘ . .
S (stagnation point)

results in an increase in the fluid temperature

_,-r""-.

and pressure.

Fig. Stagnation properties.



Expression for Stagnation Pressure (p.) in Compressible Flow

Consider the flow of compressible fluid past an immersed body where the velocity becomes

zero. Consider frictionless adiabatic (isentropic) condition. Let us consider two points, O in the free

stream and the stagnation point S.

Let, p, = Pressure of compressible fluid at point O,

V, = Velocity of fluid at O,
p, = Density of fluid at O,

T, = Temperature of fluid at O,

and p,,Vs, p. and T, corresponding values of pressure, velocity density, and temperature at point S.

Applying Bernoulli’s equation for adiabatic (frictionless) flow at points O and S, (given by egn.26), we

get:



[Y\po%Vo?'.‘ (v \ps Ve
Yy=1)pog 28 Y -1)p8 28
But z, = z; the above equation reduces to:

[Y\Po VOZ_/Y\pS
Yy-1)pog 28 \v—-1)p,8 28
Cancelling ‘¢’ on both the sides, we have:

[ Y 2o Vo _ (o WS
y=1)po 2 \v-1)p; 2

At point § the velocity 1s zero, 1.e. V= 0; the above equation becomes:

(Y \(po_pP) - W

\Y_]/ \p() ps) 2

([ N\n [ R 2

or. VT |Pof1_PLs Po| - _ o
Y—1 ) pg . Ps Po 2

\ p ( \ .

1, Po\ Po Ps ) 2



For adiabatic process:

B B
Po Ps Ps
1
or, Po - [&]r
Ps P
Substituting the value of E—O In eqn. (i), we get:
o
i i
( Y )Po 1 p.ﬁ-x(@‘wf
Yy=-1)po| Po \Ps)
_ -
A==
of, (: ! :]-529- | = (;fzi— !
Y—1) pg | Po)
_ \Y_‘—]_
or, | — (}EZE- !
| Pol |

J

Po

AdL)



or,

l+ﬁ[.}/—1]p0 . (_p_a\
2 U v )P Po

For adiabatic process, the sonic velocity 1s given by:

P
C= JYRT = |y—
\'p
For ' = _EQ_
point 0, Co Y or
\' P
a4 YPo _ 2 :
Substituting the value of = (y In eqn. (iii), we get:
Po
, \'f’_—l
% R
1+ (y-1Dx 1,) = (& ,
- Co Po )
~1
A ?

] |

or, |
2C,

(vy—-1) = (&JT
Po




oI

Or

of,

0 (y_1) = (&‘T
Po
¥=1 . =
Ps |7 = 1+[Y_1)M(-;
Po - . -
_ o
Ps = l:(Y_IJM2 P
Po . 2 0_
- i
— 1 Yy—1
P, = Do 1"‘(7 )Ml:i"

Eqn. (36) gives the value of stagnation pressure.

1)

...(36)



Compressibility correction factor:

[f the right hand side of Eqn. (36) 1s expanded by the binomial theorem, we get:

or,

But

- Y o2 Y a4 Y2-Y) .6
= 1+ =My +—- M, + M
P Po | ) 0 2 0 48 0_
B 3 o , N |
= P 1+ o [ M 2 Y ml
] 2\ 4 24 J_
2 f 2 A
_ PoYM, My 22—y, 4
L= + 1 + + M, + ...
Ps = PoT =5 \"T 7 TTyg M0 T
M2 = Vo2 _ Vo2 _ V02P0 (.. C? — YPo
0 3 = [ \ i B
CO YpO YPO \. pO

\ Po /

J

(37



Substituting the value of M g In eqn. 37, we get:

2 2 \

p5=p0+p0YxV0p0 1—|—MO+2 yMg+...

2 YPo \ 4 24 /

2 ( 2 A
_ Po Vo My 2-y .4
or, = py + | + + My + .. (38
G Por U T 0T 38
PV

Also, P, = Py 020 (when compressibility effects are neglected) ...(39)




Limits of incompressibility

The comparison of eqns. (38) and (39) shows that the effects of compressibility are
1solated 1n the bracketed quantity and that these eftects depend only upon the Mach number. The
2
2-9 4

M
bracketed quantity [z’.e., [1 + 40 + Y M, + J] may thus be considered as a compressibility

correction factor. It 1s worth noting that :

e For M <0.2, the compressibility affects the pressure difference (p,— p,) by less than I per
cent and the simple formula for flow at constant density 1s then sufficiently accurate.

e For larger value of M, as the terms of binomial expansion become significant, the compress-
ibility effect must be taken into account.

® When the Mach number exceeds a value of about 0.3 the Pitot-static tube used for measuring
aircraft speed needs calibration to take into account the compressibility effects.



Expression for Stagnation Density (p,):

From eqgn. (ii), we have:
1

Po _ (o) o Ps_
P \ps ) Po
(P

Substituting the value of

\ Po

] from eqn. (iv), we get:

|®)
2

|
@)

)
1
—

+
7~ N\

Or

(1 )
Ps = Po &
\ Po )

.(40)



Expression for stagnation temperature (T)

The equation of state 1s given by : —g = Ki

For stagnation point, the equation of state may be written as :

£ RI. or T:L&.
Py | R py

Substituting the values of p_ and p_ from eqns. (36) and ( 40) we get:




or,

(41)



Example An aeroplane is flying at 1000 km/h through still air having a pressure of
78.5 kN/m” (abs.) and temperature — 8° C . Calculate on the stagnation point on the nose of the
plane :

(1) Stagnation pressure,
(if) Stagnation temperature, and
(111) Stagnation density.
lake for air : R =287 J/kg K and y = 1 4.

Solution. Speed of acroplane,

" 1000 x 1000

1000 km/h = = 27777 m/s
60 x 60

Pressure of air, p, = 78.5 kN/m’
Temperature of air, 7, = —8 +273=265K
For air : R = 287J)kgK,y=14
The sonic velocity for adiabatic flow i1s given by:

C, = JYRT, = /1.4 x 287 x 265 =326.31 m/s

Mach number, M, = -V—D o Bt =(.851

C, 32631




(/) Stagnation pressure, p_:
The stagnation pressure (p,) 1s given by the relation:

—1 = 1

) 14
_ 4
785 1+(1*42 1)x0_8512 4

or, P,

78.5 (1.145)°° =126.1 KN/m* (Ans.)

(77) Stagnation temperature, 7T :
The stagnation temperature 1s given by:

T =T I+[Y_1]M§ [Eqn. (41)]

. 2
141

1 x0.851° [=3034K or 30.4°C (Ans.)

|
b
N
N




(#if) Stagnation density, p_ :
The stagnation density (p,) 1s given by:

Ps _ | - Py
== = RT or =
P ° Ps RT,
126.1 x 103 3 |
Or, P, 787 < 303 4 kg/m” (Ans.)

Solution. Pressure of air, p, = 200 kN/m*
27+ 233 =300 K
Velocity of air, V,, = 200 m/s

Temperature of air, 7|,

@V.Manikanth, Asst. Prof., Dept. of Mechanical, SRKREC(A).



Stagnation pressure, p, :
(/) Compressibility 1s neglected :

VZ
Py — Po | p020
3
where, Py = Ay SRR E =2.555 kg/m’
RT, 287 x 300
2.555% 2007

p. = 220+ z x107 (kN/m*)=271.1kN/m* (Ans.)

(1f) Compressibility 1s accounted for :
The stagnation pressure, when compressibility is accounted for, 1s given by:
2 [
Po VO l MO 2 - Y a4 ]
- My + ... ..|Eqgn. (38
200 200

Ps = Ppt

Mach number, M, = = = =0.576
N &/ \/yRTO \fl 4 x 287 x 300
2 ( 2
Whence, p. = 220+ 230 20 x107°| 1+ oL 2 | 4><0 5764
’ 2 \ 4 24 y

or, p. = 220+ 51.1 (1 +0.0829 + 0.00275) = 275.47 kN/m* (Ans.)



AREA-VELOCITY RELATIONSHIP AND EFFECT OF VARIATION OF AREA FOR SUBSONIC, SONIC
AND SUPERSONIC FLOWS:

For an incompressible flow the continuity equation may be expressed as :
AV = Constant, which when differentiated gives,

AdV +VdA = 0
dA  dV
or, —~ = % ..(42)
But 1n case of compressible flow, the continuity equation 1s given by:
pAV = Constant, which can be differentiated to give
pd(AV)+ AVdp = 0
or, p(AdV+VdA)+ AVdp = 0
or, pAdV + pVdA + AVdp = 0
Dividing both sides by pAV, we get:
dV dA dp
—t—+— =
VA p (43)




dA dV dp _
or, r T (43 (a)
The Euler’s equation for compressible fluid 1s given by:
& +VdV + gdz = 0
D
Neglecting the z terms the above equation reduces to:
L d +VdV =0
D
This equation can also be expressed as:
d_p X ap FVdYV = 0
pdp
or, a X ap +VdV = 0
dp  p
But, d_p = " ..|Eqn. (29)]
dp




D
p p C
L dp .
Substituting the value of — 1n eqn. (43), we get:
P
dv _dA_vav _
y A4 2
A vav av av(v*
o, — = ——= —1
A ¢ F FALE
dA dV 5 V
— M- —1 —
o it I GLT:

This important equation is due to Hugoniot.

.(44)



Eqns. (42) and (44) give variation of (%4) for the flow of incompressible and

compressible fluids respectively. The ratios (%4) and [%) are respectively fractional variations

in the values of area and flow velocity in the flow passage.

Further, in order to study the variation of pressure with the change 1n flow area, an expression
similar to eqn. (44), as given below, can be obtained:

(1 \dA
1-M°) 4

dp = pV~ .(45)

From eqgns. (44) and (45), 1t 1s possible to formulate the following conclusions of practical
significance:



(¢/) For subsonic flow (M <1):

dVv dA
4

dV dA
V

(1) For supersonic flow (M > 1) :

— > 0; i < 0; dp < 0 (convergent nozzle)

— < 0; ) >0 ; dp > 0 (divergent diffuser)

% > 0 de >0;dp <0 (divergent nozzle)
av . d

I/

(z27) For sonic flow (M =1):

and,

dA
A

dp

—
—

0 (straight flow passage since dA4

must be zero)

(zero/zero) i.e. indeterminate, but
when evaluated, the change of
pressure dp = 0, since d4 = 0 and
the flow 1s frictionless.

< 0 i < 0;dp >0 (convergent diffuser)

Throat
A, = A4,

— O — O — — O - — — — O — — O — — O — 0 — — W — -

Fig. Sonic Flow (M = 1)



P increases
V decreases

P decreases
V increases

Ma< 1 Ma <1

Subsonic nozzle Subsonic diffuser

(a) Subsonic flow FIGURE

Variation of flow properties
in subsonic and supersonic nozzles
and diffusers.

P decreases
V in

Ma > 1 V decreases

- p increases

- p decreases

Supersonic nozzle Supersonic diffuser

(b) Supersonic flow @V.Manikanth, As



